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Abstract

When evaluating research findings, it is important to examine what statistical meth-
ods were used to reach and support the stated conclusions. Regression is a common
analysis in the Industrial /Organizational psychology literature and researchers have
debated how to interpret the standardized optimal weights produced in ordinary
least squares (OLS) regression. Multiple methods for determining the relative im-
portance of predictors in a regression model have been proposed, along with a va-
riety definitions of what is meant by predictor importance. Conversely, it has been
shown that by slightly decreasing the model R? that is obtained through OLS mul-
tiple regression an infinite number of alternative weight vectors can be produced,
calling into question the meaning of OLS weights when the alternative weights di-
verge from the OLS weights. Articles published from 2003-2014 in the Journal of
Applied Psychology, Academy of Management Journal, and Psychological Science
that used OLS regression were reviewed. It was found that regression is used to an-
swer questions on a wide variety of topics and interpreted in a multitude of ways

in the I/O psychology and general psychology literature. The study found that dif-
ferent relative importance analyses can result in different conclusions about what
predictors are most important. Examining alternative weight vectors further brings
into question conclusions drawn based on optimal weights. For the majority of
studies examined alternative weight vectors were found that provided a different
rank ordering of predictors with only a small loss in model fit. The findings in this
paper highlight and reinforce the need for Industrial/Organizational psychologists
to turn a critical eye on the interpretation of regression analyses, especially regres-

sion weights, in reaching substantive conclusions.
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1 Introduction

It has become clear in Industrial /Organizational (I/O) psychology that, not
only is it important to carefully consider what topics warrant future study, but
also to give deliberate thought to how to study the selected topic of interest. There
appears to be a delay between the publication in quantitative psychology jour-
nals of new information regarding statistical analysis methods favored by Indus-
trial /Organizational psychologists, and the acceptance and implementation of these
findings by those publishing in premiere I/O journals. A prime example is the con-
tinuing controversy regarding the use of null hypothesis significance testing and
psychologists’” abilities to correctly interpret and communicate the findings of their
statistical analyses (e.g. Cohen, 1994; Cortina & Landis, 2011; Schmidt, 2010).

Dissemination of relevant findings from cutting edge quantitative journals (e.g.,
Psychometrika) to 1/O psychology is crucial for informing correct use and interpre-
tation of statistical tools in the I/O field. Critical flaws in widely used statistical
approaches can have a profound effect on 1/O knowledge and applications. Ignoring
methodological advancements can compromise the integrity of I/O psychologists’
work. The overall objective of the current research is to critically examine the use
of multiple regression analysis in a sample of recently published 1/O research lever-
aging developments from the quantitative literature demonstrating fundamental
problems with regression weights. This analysis will yield an enhanced understand-
ing of how to interpret regression analyses and ensure that conclusions based on
these analyses are sound.

Ordinary least squares (OLS) multiple regression is a frequently used statisti-
cal approach in I/O psychology (Stone-Romero, Weaver, & Glenar, 1995; O’Neill,

McLarnon, Schneider, & Gardner, 2013). Peer reviewed journal articles and field
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applications use regression to test hypotheses about the relative importance of pre-
dictor variables. The field’s guidelines (Principles for the Validation and Use of Per-
sonnel Selection Procedures (Society for Industrial and Organizational Psychology,
2003)) presume the use of multiple regression analyses in providing evidence for im-
portant issues relating to prediction, fairness and bias. In short, multiple regression
has been embedded in the DNA of both applied and academic I/O psychologists.

OLS multiple regression is used to determine which linear combination of in-
dependent variables results in the smallest sum of squared errors (SSE) when pre-
dicting the dependent variable; it also maximizes the correlation between observed
and predicted values of the dependent variable. The combination of weights that
produce this minimized SSE and maximized correlation are considered optimal. In
this paper beta weights will refer to the standardized regression weights calculated
based on a sample of data. It long has been known that, when developing a regres-
sion equation for the purpose of predictive power outside of the original sample,
equal weights perform as well as optimal weights in some situations (e.g., Davis-
Stober, 2011; Green, 1977; Ree, Carretta, & Earles, 1998; Schmidt, 1971; Wainer,
1976; Wilks, 1938).

Waller (2008) demonstrated that there are an infinite number of interchangeable
weights that produce a proportion-of-variance-accounted-for just slightly smaller
than the maximized squared multiple correlation. That is, infinite sets of exchange-
able (or Waller states, “fungible”) regression weights in multiple regression all result
in the same, slightly suboptimal variance-accounted-for. Waller further illustrated
that the fungible solutions may drastically differ from each other and from the least
squares weights. This last point raises major concern for the interpretation of re-
gression weights.

The practice of interpreting regression weights in research and applied settings
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appears to have critical flaws. Thus, interpreting regression weights is not as direct
as has been portrayed in applied psychology research and practice. For example,
journal articles that have drawn conclusions based on the size or relative magnitude
of regression weights need to be examined carefully as they may be endorsing erro-
neous conclusions based on optimal weights.

These erroneous conclusions are not only a threat to those conducting 1/O psy-
chology research but also to consumers of research who may reach incorrect conclu-
sions and practitioners who may base applications on faulty interpretations. Cur-
rently, much research in I/O psychology uses multiple regression analysis and many
articles using this method are highly influential. Waller’s (2008) demonstration of
how some regression models are insensitive to changing multiple regression weights
and the misleading conclusions than can result from relying on these weights have
not been fully recognized and integrated in the I/O field. It is crucial to bridge this
divide between the applied and quantitative literature.

In order to bridge the divide, research must highlight how findings regarding
statistical methods presented in quantitative journals have a direct impact on the
validity of the conclusions being drawn in applied journals. Analyzing the use of
multiple regression weights in 1/O research will help I/O psychologists appreciate
the limitations of the approach and may lead to different substantive conclusions
than those already reported in the literature.

Understanding what regression weights actually mean is essential before conclu-
sions are drawn. Koopman (1988) found that, at least in some situations, similar
composites (which, in terms of multiple regression, would be considered the pre-
dicted criterion values) could be produced by weights that differ from the optimal
weights but that similar weights cannot produce drastically different composites.

It follows then that when examining multiple regression, the interpretation of the
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obtained optimal weights can pose a challenge. When determining how to interpret
regression weights, it is important to examine parameter sensitivity. Parameter sen-
sitivity is determined by examining how changes in weights are related to changes
in fit indices (e.g., SSE and R? values). Models that are sensitive to weight shifts
are characterized by a large change in fit indices accompanied by small changes in
the weights; the fit indices associated with models that are insensitive to weight
fluctuations are robust to slight (and sometimes not so slight) changes in weights.

It is important to make the distinction between sampling variability and param-
eter sensitivity. Large samples and meta-analysis have allowed I/O psychologists
to become increasingly confident in their findings. Large sample sizes help to pro-
tect analyses from sampling variability that arises from capitalization on chance.
Sampling variability is how parameter estimates might change across samples. Sta-
tistical significance is linked to sampling variability. Sampling variability is a valid
consideration that has received much attention, but it is not the only consideration.
Parameter sensitivity has been a less prevalent topic in I/O literature and is actu-
ally independent of sample size (Green, 1977). The lack of a relationship between
parameter sensitivity and sample size is important because the general approach
of bigger is better when considering sample size will not help to protect statistical
results against parameter sensitivity.

Parameter sensitivity highlights the difficulty in deriving meaning from beta
weights in OLS regression. Various issues related to interpreting beta weights have
been examined over the years and many methods have been proposed as improve-
ments over beta weights when it comes to determining relative importance of pre-
dictors. Dominance analysis, relative weights analysis, and various other methods
have made strides towards comparing the relative importance of predictors in a

regression model (Johnson & Lebreton, 2004; Nimon & Oswald, 2013). Unfortu-

4
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nately, despite being discussed within the psychology literature, some believe that
the lack of metrics provided in the standard SPSS regression output contribute to
researchers relying on beta weights and R? (e.g. Nathans, Oswald, & Nimon, 2012;
Nimon, 2011). Even with the advantages offered by relative importance analytical
methods, these methods do not result in a measure of the overall model sensitiv-
ity. A measure of regression model sensitivity is absent from the I1/O literature and
would allow a more complete understanding of regression analysis. Understanding
methods we employ will allow us to make more valid conclusions and provide better
recommendations for practice.

The current research on how to interpret multiple regression weights is com-
pelling. Unfortunately, this research has not made it into the mainstream 1/0 jour-
nals, despite the use of an I/O article to illustrate the points made in Waller (2008)
and calls for psychologists to attend to the quantitative literature (Nimon, 2011).
In order to strengthen the dissemination of and attention to new statistical find-
ings by /O researchers and practitioners, it is important to emphasize their direct
applicability and critical importance to /O psychology.

The current research has descriptive rather than inference-based goals. Well-
defined methods already exist to determine if multiple regression models are insen-
sitive. It is also clear that, when models are insensitive, and even when they are
not, it is difficult to draw conclusions from their relative magnitude. This study
draws upon two complementary lines of existing research - the more theoretical
quantitative research on fungible weights and the applied research in I/O psychol-

ogy. Specifically, the following questions will be addressed:

1. How is regression used in I/O and general psychology and how are regression

weights interpreted?
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2. What analyses have been used in the I/O and general psychology literature to

interpret beta weights in regression?

3. Are regression models in the I/O and general psychology literature insensitive

to shifts in predictor weights?

4. How influential are the I/O and general psychology articles that use OLS re-

gression?

Taken together, the answers to these questions will describe the magnitude of prob-
lems arising from reliance on regression weights in the I/O and general psychology
research literature. Examining the insensitivity of multiple regression weights used
in research will allow 1/O researchers to understand the magnitude of the impact
of improperly interpreting regression weights specifically and statistical tools more
generally. In this paper the notation of Abadir and Magnus (2002) is used, vectors
are represented by bold-italic lowercase letters, matrices are represented as bold-
italic uppercase laters, and random variables and scalars are represented by italic

lowercase letters.

1.1 Regression in I/O Research

Regression has had a robust presence in I/O research. Stone-Romero et al. (1995)
examined research published in the Journal of Applied Psychology between 1975
and 1993. They found that, across this time period, between 10% and 38% of ar-
ticles employed multiple regression. Also during this time frame, the proportion of
articles using multiple regression increased.

The applications of regression can be split into two distinct categories: predic-

tion and explanation (Courville & Thompson, 2001). Regression has been used
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heavily to support and reject theories, and has played a major role in the selection
literature. The literature examining general mental ability (g) as a predictor of job
performance has repeatedly used regression to emphasize the role of g in prediction
even when other selection tools are employed.

Schmidt and Hunter (1998) conducted a meta-analysis and summarized 85 years
of research in personnel selection. They used regression to identify predictors that
added incremental validity above g when predicting job performance and training
performance. Work samples, integrity tests, structured interviews, and conscien-
tiousness measures added the most incremental validity when they were combined
with g in a regression. This regression analysis also showed that, if g is used in a
selection system, unstructured interviews add only .04 to the validity of the system.
Regression also identified measures of conscientiousness and integrity tests as the
two predictors that added the most incremental validity above g when predicting
training performance. The impact of this article was enormous, as it was cited over
3,500 times according to Google Scholar (as of February 24, 2017).

Schmidt and Hunter (2004) re-examined past findings on personality and g to
determine which variables measured early in life were most important in predicting
career success later in life. In this study, they re-analyzed data from Judge, Hig-
gins, Thoresen, and Barrick (1999) using multiple regression. They combined occu-
pational level and income into a variable titled career success. The adjusted multi-
ple R for when Big Five personality traits were included in the model was .56. Af-
ter adding g into the model, the multiple R raised to .63. Schmidt and Hunter ex-
amined the beta weights and concluded that g and conscientiousness were the most
important predictors. Another regression was run with only g and conscientiousness
as predictors, and the multiple R remained at .63. This study emphasized the fact

that measures of cognitive ability maintain their validity over the long term, with
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scores obtained in childhood predicting outcomes years later.

Ree, Earles, and Teachout (1994) used multiple regression to examine findings
concerning specific abilities (s) and g. They found that adding s into a regression
only increased the validity of the system by .02 over g. Their findings indicated
that, although s does add validity in predicting performance, the addition is small
and may not be considered worthwhile in some contexts.

Leadership is a popular research topic and there has been controversy over whether
traits are useful in the context of leadership. Bass (1990) posed the question of
what differentiates leaders from other people. Judge, Bono, Ilies, and Gerhardt
(2002) conducted a meta-analysis to look at predictors related to leadership. They
used meta-analytic correlation estimates to conduct a regression to examine how
the Big Five predicted leader emergence and leadership effectiveness. They found
that the multiple R for predicting leadership emergence from the Big Five was .53
and for predicting leadership effectiveness was .39. Extraversion, conscientiousness,
and openness were the strongest predictors of leadership. This study confirmed that
personality is a useful predictor of leadership, both emergence and effectiveness. It
also highlights that personality may be more relevant to emergence than to effec-
tiveness.

A newer interest in personnel selection is changes in criteria over time, and whether
or not predictors will remain valid across these changes in the criteria of interest.
Lievens, Ones, and Dilchert (2009) examined the validity of the Big Five personal-
ity factors for predicting performance across multiple years of medical school. They
used meta-analytic correlation estimates to regress performance on the Big Five.
They found that, across the years of medical school, the beta weights increased for
extraversion, openness, agreeableness, and conscientiousness. The largest gains were

seen in openness, extraversion, and conscientiousness. They attributed this gain to
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the change in what was being captured by the selected criteria (GPA). The authors
believe that performance in applied settings became more important, and the need
for interpersonal skills increased. This study emphasized the importance of criterion
change. It also highlighted the importance of personality for predicting long-term
success in the medical field and other fields where interpersonal skills become in-

creasingly important as time goes on.

1.2 Regression in Applied Domains

Not only has regression been a popular tool in academic research, but it is often
used in applied settings as well. In applied settings, regression is frequently used
in developing and evaluating selection systems, determining what factors influence
things like employee engagement and performance, and evaluating the effective-
ness of various intervention programs. When working as an external consultant,
the question often faced is, “Will the consultant increase the company’s predic-
tion capabilities?” In this case, hierarchical regression may be used to demonstrate
whether combining existing predictors with a new, customized measure would allow
the client to better predict which applicants will perform well on the job.

When working within a company, there might be a more general question, such
as, “What measures should the company use to screen and hire applicants for a
particular position?” In this situation a few measures may be administered to in-
cumbents and the incumbents’ performance evaluation can be used as the outcome
variable. The multiple R can be examined to determine the validity of the com-
bined measures. Regression also can be used to eliminate measures that are not
contributing to the prediction of the criterion. If a measure is removed from the

regression equation and the multiple R does not change much, then it may not be
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worthwhile to administer that assessment. It is also possible to break down the per-
formance evaluation into sub-scales and use each subscale as a dependent variable.
If the multiple R is particularly low for one subscale, then efforts can be focused on
developing a new selection measure that would better predict performance in this
area.

Another question in applied settings that is targeted using multiple regression
is: “What drives employee engagement and turnover?” Many companies adminis-
ter surveys at least once a year that gauge employee engagement and/or satisfac-
tion. Regression sometimes is used to examine which items, or subscales, are most
predictive of future employee satisfaction or turnover. Given the dichotomous out-
come variable, predicting turnover within the year would involve using a logistic
regression procedure. Standard OLS regression is often used when looking at how
responses to an engagement survey at time 1 might account for responses to sur-
vey questions such as “Do you intend to stay?” and “What is your overall satisfac-
tion with your job?” at time 2. Using regression, companies attempt to determine
what issues are most likely to cause employees to leave, become disengaged, or less
productive members of the team. The company may decide to change a policy or

launch interventions as a result of these analyses.
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2 Brief Review of Relevant Regression Literature

2.1 Multiple Regression

OLS multiple regression is used to create a linear composite of a specified set of
predictor variables that minimizes the sum of squared errors (SSE) when predicting
the outcome variable. This process maximizes the correlation between the observed
and predicted values of the outcome variable. The combination of weights that pro-
duce this minimized SSE and maximized correlation is considered optimal.

The general (model) form of OLS multiple regression is:

Yy="bo+bixi +bexa+ ...+ bz, +e

where y is an n x 1 vector of scores on the outcome variable of interest. by is the
intercept value, which can be thought of as what the score on y would be if all x;
were equal to 0. Each x; is an n x 1 vector of scores on predictor variable 7. The
predictor variables can also be represented as an n x p matrix, X, of predictor
scores. The regression weights associated with each predictor are represented by
by through b,. Error in the model is represented by the n x 1 vector e and is of-
ten referred to as random error. The error can be from random influences or from
variables unaccounted for in the model. The takeaway from the model is that in
OLS regression y is assumed to be a linear combination of p predictors and error
(Bobko, 2001; Darlington, 1968).

There are a few important assumptions surrounding the error term. The error is
assumed to be conditionally normally distributed with a mean of 0 and a constant
variance across all values of @;. Sources of error (which can be thought about as

separate e;) are assumed to be independent (Bobko, 2001).
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The model discussed above is a theoretical population model. When creating a

model in practice the error term is not estimated and we are left with:

y:80+31w1+32w2+...+8pwp.

Here, g is the n x 1 vector of predicted values of y based on the regression equa-
tion and and each b; is the estimated regression weight associated with predictor p.
When scores on all variables are standardized so that their variance is equal to one,
and centered so the their mean is equal to 0, then the regression weights become
standardized regression coefficients, called beta weights. If the scores are standard-
ized and centered at 0 (converted to z-scores), the intercept term disappears. This

standardized regression form is:

g = Xp.

Where 3, is the p x 1 vector of standardized regression coefficients, 3, through f,.

2.2 Determining Importance in Multiple Regression

In the past, researchers have used a variety of methods to evaluate the contri-
bution of predictors, including zero-order correlations, standardized beta weights,
and semipartial correlations (Budescu 1993; Johnson, 2000; Johnson & LeBreton,
2004; Tonidandel, LeBreton, & Johnson, 2009). However, these measures are not
easy to interpret when multicollinearity exists, which is often (if not always) the
case in I/O psychology (Darlington, 1968). When variables are uncorrelated, the
zero-order correlations and standardized beta weights are equivalent and the sum of

their squares is equal to the multiple R?; this equivalence is no longer true when
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predictors are correlated. It has been recommended that regression coefficients
and correlations be taken into account when trying to determine relative impor-
tance. However, simply examining these two indices is subjective and leaves room
for debate (Courville & Thompson, 2001; Johnson & LeBreton, 2004; Thompson &
Borrella, 1985). To complicate the matter, it is possible for a predictor to have a
large correlation with the outcome variable but have a beta weight near 0, or even
a large positive correlation with the criterion and a negative beta weight (Darling-
ton, 1968).

One of the major issues in determining the relative importance of predictors in a
regression equation is defining importance (Nathans, Oswald, & Nimon, 2012; John-
son & LeBreton, 2004; LeBreton, Ployhart, & Ladd, 2004; Budescu 1993). Different
measures use different definitions of importance to rank-order variables. LeBreton
et al. (2004) proposed that measures of relative importance could assess direct ef-
fects, total effects, and partial effects. It is important to note that the definitions
of direct, total, and partial effects used by LeBreton et al. and throughout the rest
of this paper differ from how these terms are commonly defined in structural equa-
tion modeling (SEM) (e.g. Sobel, 1990). LeBreton et al. define direct effects as the
contribution of a predictor to the outcome variable without the presence of other
predictors. A predictor’s total effect is its contribution after the contributions of all
other predictors have been removed. The partial effects focus on a predictor’s con-
tribution when accounting for some type of model subset(s).

A single technique can assess more than one type of importance based on this
classification system. Looking at all three types of effects for a predictor gives a
more complete picture of how that predictor functions within the system. Beta
weights only account for total effects. Given that they are calculated by taking into

account the contributions of all predictors, they do not reflect partial or direct ef-

13

www.manharaa.com




fects (Nathans et al., 2012).

2.2.1 Zero-Order Correlation Coefficients

Zero-order correlation coefficients, also known as validities, are the correlations
between the predictors and the outcome variable. They are measures of the direct
effect of the predictor on the outcome variable and do not account for the effects
of other predictors (Nathans et al., 2012). They are easy to calculate and even can
be calculated by hand in small data sets. The zero-order correlation is simply the
covariance of the predictor and outcome variable divided by the product of the two
variables’ standard deviations. For this paper the zero-order correlation for a given
predictor, x;, will be denoted 7y, .

When predictor variables are uncorrelated, the squared zero-order correlations of
all predictor variables with the outcome variable sum to R?. If the question facing
a researcher or practitioner is, “Which single predictor should I use?” then it makes
sense to choose the predictor with the largest zero-order correlation since shared
variance with other predictors is not a concern. However, when looking at questions
concerning which predictors should be used together, zero-order correlations can be

hard to interpret in the presence of correlated predictors.

2.2.2 Standardized Regression Weights

Standardized regression weights (beta weights) are the weights obtained from
an OLS regression where the predictor and criterion have been transformed into z
scores. Along with interpreting their relative size, researchers often report the sta-
tistical significance of the beta weights. The significance of a beta weight is gen-
erally determined using a t-test, and simply states whether or not the beta weight

significantly differs from 0 (Bobko, 2001). The commonly used formulas for deter-
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mining the significance of a single unstandardized predictor weight can be expressed

as:

21_R2
g S0-R)

Cs(L-R)(n—-p-1)

Where R? is the R? obtained from regressing predictor z; onto all other predictors
in the model. As R? increases, so does sgi, indicating that with increasing multi-
collinearity amongst predictors the regression weights become more unstable. Re-
member that in the case of beta weights scores on the predictors and the outcome
variable have been converted to z-scores. It follows that for beta weights SZ and

2

S

2 will be equal to 1 and can be removed from the calculation for si (e.g. Harris,

2001). This means the equations can be rewritten as:

t(n—p—l):ﬁ

58, ‘

P
=R - 1)

It is important to note that Jones and Waller (2013) found that under certain
conditions using the above formula to compute the standard error for a given [;
produced biased results, and suggested that users of regression should use the delta
method to estimate the standard error for a given ;.

Regression weights represent the expected difference in the outcome variable,
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given an increase of one unit in the predictor, while holding the value of other pre-
dictors constant (Hoyt, Leierer, & Millington, 2006). Interpreting the relative size
of beta weights is often used to assess variable importance (Thompson, 2001; Zien-

tek, Capraro, & Capraro, 2008).

2.2.3 Structure Coefficients

Structure coefficients examine direct effects by looking at the correlation be-
tween a predictor and the score on the outcome variable predicted by the full re-
gression model (g) (Courville & Thompson, 2001; LeBreton, Ployhart, & Ladd,
2004):

rs, = Tﬁmi-

Dunlap and Landis (1998) demonstrate that structure coefficients can also be
calculated by dividing the zero-order correlation by the multiple R for the regres-

sion model:

In order to see how rgs, is equivalent to Ty—gi let X be the n x p matrix of stan-
dardized scores (z scores) for all n subjects on p predictor variables. Let 3 be the
p x 1 column vector of standardized OLS regression weights and let g be the n x 1

column vector of predicted criterion scores. Given §y = X 3, we know that:

Cov(X,9) = Cov(X, XP).

Which means that:
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Cov(X, ) = (=) X' XB.

n—1

Given that:
LYy
Rx=(—-)X'X,
n
where Rx is the predictor correlation matrix. The Cov(X,g) can be expressed as:

COV(X7 g) - RXXIG

In order to convert Cov(X,9) to ryx, it is necessary to divide Cov(X, g) by

the square root of the variance of . The variance of § can be calculated as:
sy = E@%)— [E(@)]".

Since E(g) is equal to 0 this can be reduced to:

It then follows:

(2) X0 = () pxx6 - 5.

Putting it all together we see that:

- Rxp
Y VB Rx3

Noting that:
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—1
IB = RX Tyx,

it follows:

-1
RxRX Tyx . Tyx

VBRxRyr,x  VBTux

Tgx =

Given that R? = B'r,x:

i = T,

Structure coefficients are simply correlations, and squaring structure coefficients
represents the variance shared between the estimate of the outcome variable and
the score on a predictor variable. Looking at structure coefficients in conjunction
with beta weights can be enlightening. A variable with a large structure coefficient
and small beta weight must share common variance with the outcome variable with
at least one other predictor. One or more other predictors are accounting for that
shared variance in the regression model (Nathans et al., 2012).

Structure coefficients can also be used to detect suppressor variables. If a pre-
dictor has a large beta weight and a small structure coefficient, that variable is a
suppressor variable. However structure coefficients cannot identify which predictors

are being suppressed nor the size of the suppression effect (Nathans et al., 2012).
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2.2.4 Pratt Measure

Pratt (1987 as cited in Nimon & Oswald, 2013 and Thomas, Hughes, & Zumbo,
1998) developed a measure referred to as the Pratt measure or product measure. It

is calculated as follows:

m; = ﬂirywi .

Where m; is the value of the Pratt measure for predictor i. As can be seen above,
this measure is the product of the standardized regression coefficient for predictor ¢
and the zero-order correlation between scores on predictor ¢ and the outcome vari-
able y. It is a decomposition of R? and the m;’s sum to R?. Given the nature of
the calculation, this measures both direct (zero-order correlation) and total effects
(beta weights) (Nathans et al., 2012).

This measure of variable importance is fascinating in that it allows importance
to be calculated for a subset of variables simply by adding their individual impor-
tance scores. Difficulties of interpretation for this measure arise when a negative or
zero value of m; is observed, which can be a result of correlated predictors or sup-

pression effects (Thomas et al., 1998).

2.2.5 Commonality Analysis

Commonality coefficients partition the variance explained in the regression model
into unique effects and common effects. Unique effects apply to a single predictor
while common effects come from variance shared by every possible subset of predic-
tors (Amado, 1999; Nathans et al., 2012; Zientek & Thompson, 2006).

Unique effects are a measure of total effect. They quantify the contribution of

a predictor to the model that is not shared with other predictors. It is also known
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as the predictor’s usefulness or squared semipartial correlation. In the case where
all predictors are uncorrelated, the unique effect is equivalent to the squared zero-
order correlation and squared beta weight. In the case of uncorrelated predictors,
ranking of variable importance can be done based on the unique effects (Nathans
et al., 2012). Common effects are also a measure of total effect and measure the
predictor’s contribution that that predictor shares with every possible predictor set.
For a three predictor model, seven commonality coefficients would be calculated.
Three commonality coefficients would be calculated for the unique contribution of
each predictor and then four commonality coefficients would be calculated for the
four, two-predictor subsets.

Commonality analyses can be particularly useful in identifying suppressor ef-
fects (Nimon & Oswald, 2013; Zientek & Thompson, 2006). While a small negative
commonality coefficient can be a result of sampling error, negative commonality
coefficients can also indicate the presence of a suppressor. Commonality analysis al-
lows suppression effects to be quantified by summing the negative common effects

(Nimon & Oswald, 2013).

2.2.6 Dominance Analysis

Budescu (1993) set out three conditions for determining the relative importance

of predictors in a regression equation:

“(a) Importance should be defined in terms of a variable’s “reduction of
error” in predicting the criterion, y; (b) The method should allow for
direct comparison of relative importance instead of relying on inferred
measures; (¢) Importance should reflect a variable’s direct effect (i.e.

when considered by itself), total effect (i.e., conditional on all other pre-

20

www.manharaa.com




dictors), and partial effect (i.e. conditional on subsets of predictors).”

(Budescu, 1993, p.544).

Note that Budescu does not assume that variables can be ordered in terms of im-
portance. Dominance analysis sets out to determine if ranking by importance can
occur (Johnson & LeBreton, 2004).

Dominance analysis compares pairs of predictors and how they behave in h =
2(r=2) models. These models involve all subsets of predictors. Variable a dominates
variable b in model A if adding variable a to model h results in a greater R? than
adding variable b to model h. By performing a dominance analysis for all pairs of
the p predictors, dominance analysis determines an order of importance for the pre-
dictors, if that order exists.

Azen and Budescu (2003) defined three levels of dominance: complete, condi-
tional, and general. Variable a completely dominates variable b if it is dominant
across all A models. Variable a conditionally dominates variable b if the average in-
crease in resulting from the addition of variable a across models of size k is greater
than that for variable b for all k. Variable a generally dominates variable b if the
average increase in R? caused by the addition of variable a across all A models is
greater than that for variable b.

Dominance analysis becomes computationally difficult as the number of predic-
tors in the model increases. For a 10 predictor model, 256 models must be com-
puted, this number rises to 262,144 models in the case of 20 predictors. Even with
modern computers this process can be prohibitive due to memory and time require-
ments. Let’s think about a company with a 21 item engagement survey, 20 items
are considered possible drivers of engagement and one item is a general engagement

question that is seen as the outcome variable of interest. The company wants to
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know the “key drivers” of that single outcome item by examining the relationship of
the 20 items at time 1 to the outcome item at time 2. That immediately involves
the aforementioned 262,144 models, assuming only company wide results are re-
quired. Now suppose someone asks how that same analysis would look for the sales,
HR, and engineering functions? This would require running 4 dominance analyses
with 20 predictors- that is over 1 million models. And this does not even take into

account regional stakeholders.

2.2.7 Relative Weights

Noting the computational challenges of dominance analysis as the number of
predictors increased, Johnson (2000) proposed a method of relative importance
analysis that examines total effects (Nathans et al., 2012). Relative weights analysis
involves deriving a set of variables that are uncorrelated with each other but that
maximize the correlation with the initial predictors (Tonidandel & Lebreton, 2010).
The goal is to find the best-fitting set of orthogonal variables in the least squares
sense, where the SSE between the original and orthogonal variables is minimized.
Finding the orthogonal variables starts with the singular value decomposition of X,

where X is an n X p matrix of predictor scores. The decomposition is as follows:

X = PAQ.

Where P is an n X p matrix containing the eigenvectors of X X’ that correspond
to the nonzero eigenvalues, @ is a p x p matrix of the eigenvectors of X'X, and A
is diagonal and contains the singular values of X. The set of orthogonal variables
that minimizes the residual sum of squares between the original and orthogonal

variables is contained in matrix Z:
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Z = PQ.

After finding the orthogonal variables, standardized beta weights are obtained
from regressing y on Z. The vector of beta weights from this regression is given by

the following:

B =QP'y.

Next, X is regressed on Z. The standardized weights from this regression are rep-

resented by A* and are calculated as follows:

A =QAQ'.
Using these standardized weights, the vector of relative weights can be calculated:
c— A*mﬁ*m’

where A = [|\2]] and 87 = ||8:2||. Each A2 represents the proportion of vari-
ance in z; accounted for by x;. The values in & should sum to R?. However, if there
are suppression effects, the total may exceed R?* (Nathans et al., 2012). Dividing
g, by R? gives a measure of how much variance predicted by the optimal model is
attributable to predictor p. When predictors are uncorrelated, then € contains the
squared standardized regression coefficients.

From a computing perspective relative weights are easy to compute when com-

pared to dominance analysis (Johnson, 2000). Summing to R? allows for relative
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weights to be easily understood as a partition of the total variance accounted for
by the model and have the added value of reducing the effects of multicollinear-

ity. However, relative weights do not neutralize the issue of correlated predictors;
weights generally contain both unique and shared variance (Nathans et al., 2012).

In 2014 Thomas, Zumbo, Kwan, & Schweitzer published a reanalysis of John-
son’s methods. Thomas et al. points out that Johnson’s approach assumes that
the variance of each zj (the columns of Z ) could be partitioned between the x;
(columns of X') based on the squared correlations between the x; and a given zy.
Thomas et. al emphasized the fact that the columns of X are generally correlated
with each other making it inappropriate to use squared simple correlations as a
method of partitioning variance accounted for by these columns. The authors do
mention however that despite these mathematical issues past articles (i.e. Johnson,
2000; LeBreton, Ployhart, et al. 2004) have found surprising levels of agreement
between the results of general dominance and relative weights.

Thomas et al., provide two examples of where relative weights and dominance
analysis diverge. One of the examples showed a difference in the estimates of the
percent of explained variance accounted for by each predictor and the other exam-
ples showed an inversion of the 2nd and 3rd ranked predictors when comparing gen-
eral dominance and relative weights. The objections presented in the paper based
on the derivation of relative weights are certainly a valid criticism and one that
should be concerning to those who are considering using relative weights. However,
the demonstrations of how the results of dominance analysis and relative weights
differ in practice may leave some readers unconvinced that using relative weights
would be problematic in practice, especially given the amount of computing power

required to run dominance analyses.
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2.2.8 Agreement Between Measures of Relative Importance

A summary of the approaches to relative importance analysis discussed in this
paper is provided in Table 1. LeBreton et al. (2004) performed a Monte Carlo sim-
ulation that examined the agreement of relative importance methodologies. The
study used the rankings produced by dominance analysis and calculated a Kendall’s
7 for the agreement of these rankings, with rankings based on squared zero-order
correlations, squared beta coefficients, the Pratt measure, and relative weights anal-
ysis. The correlations ranged from .78 (squared beta) to .96 (relative weights), in-
dicating a high, although not perfect, level of agreement. However, this study failed
to provide a full correlation matrix for the relative importance measures and only
dominance analysis was correlated with all alternative methods examined. The
question regarding agreement amongst the other metrics still remained.

Despite the attention paid to methods of interpreting relative importance in
regression, it is still common for published research to look to beta weights to de-
termine the importance of variables used in regression analysis. To understand
the meaning of beta weights, it is necessary to examine past work on regression

weights.

2.3 Regression Weights

Optimal weights are produced by OLS regression. Optimal weights can be stan-
dardized or unstandardized. Standardized weights can be obtained by converting
the scores on all variables in the model to z-scores. Unstandardized weights remain
in the original variable metric. It is common for optimal weights to be reported in